
EOS Documentation 
By Michael Adelson 

 

Model Organization 
 

 EOS intends to be, first and foremost, a model of an economy. Real-world economies are 

driven and influenced by millions of factors, from individual purchase decisions to high-level 

asset trading to political initiatives and weather patterns. Academic approaches to economics, 

however, often rely on massive assumptions and simplifications in order to keep their models 

manageable. EOS takes a middle road, neither forcing upon itself the impossible task of perfectly 

modeling a real economy nor building in assumptions in a way that constrains later refinement 

and specification.  

 

The Framework 

 

 The key to this flexible structure is EOS’s core model framework, a set of “primitives” 

which we believe can be used to describe nearly every type of economic activity (with one 

notable exception—see Future Projects). The primitives are: Agents, Markets, and Goods. 

 

Agents 

 

Agents distinguish themselves because they represent decision-making units. In addition 

to making decisions, Agents own Goods and can die (be removed from the simulation). People, 

as well as corporate entities like firms and banks, can be modeled as Agents. 

 

Markets 

 

 A Market is something which enables the exchange of two Goods, called the currency 

and the product. Offers are made using two parameters: a maximum quantity of product and unit 

price (in currency). The seller sets the minimum price at which he or she is willing to sell; the 

buyer sets a maximum. The Market’s job is to somehow perform transactions based upon the 

various offers it receives. There are many types of real-world Markets; it is our hope that our 

most or even all of them can be put in terms of our Market primitive.  

 

Goods 

  

 A  Good is an object that represents a quantity of some commodity owned by an Agent. 

In the baseline, for example, every Agent owns a single Food Good which stores a variable 

quantity of food. In many ways, the Good primitive is a very general one. For example, it can 

represent both discrete (like a tractor) and continuous (like money) goods. However, Goods 

make one very important assumption about the commodities they represent: in Market 

transactions, two Goods vary only in their quantity. That is, from the Market’s perspective, the 

3.0 food stored in one Food Good is identical to the 3.0 food stored in another; thus there is no 

concept of differing quality. This is a common assumption used in economics, and it is very 

reasonable for many types of basic commodities, such as food, money, land, and natural 



resources. Furthermore, this assumption is important for computational purposes: matching up 

and making buy offers and sell offers in a Market with two parameters (quality and price) is 

much more difficult than working with price alone. If in the future it becomes necessary to add 

variable-quality commodities to EOS, this can be done through modification of the Good 

primitive. 

 

Economy 

 

 Although Economy.java is part of the framework package, the Economy class is really 

not one of EOS’s primitives. Instead, Economies are responsible for coordinating and driving the 

simulation (see Economy under Code Structure). 

 

Goals—the Model 

 

 EOS’s basic economic model is designed to achieve several goals which its predecessor, 

Minsim, did not. The first and foremost of these goals was that EOS should be simple to 

understand. By limiting the framework to a very small number of primitives, EOS should be easy 

to learn, add to, and explain to others. Through creating extremely general primitives, EOS also 

achieves the goal of being relatively complete, creating an economic modeling platform on 

which an enormous variety of industries, market structures, and strategies can be modeled. 

 

Future Projects 

  

 Although the baseline model has a lot of room for interesting experimentation, there are 

two major framework-level projects that remain to be done. They are explained here. 

• Contracts: The addition of Contracts, representing agreements between Agents, would 

bring the model to a relatively complete state. Contracts would allow users to model 

loans, employment contracts, stock/joint firm ownership, all of which are crucial 

components of a complete economic model. 

• Birth: The current model allows Agents to die, but not to be born. This means that 

populations can only decline, which makes long-term stability difficult to judge.  Adding 

reproduction to EOS is an interesting challenge from a modeling perspective. Should 

Agents strategically choose when to have a child or should it happen randomly? How 

should children gain their initial allotment of Goods? Entrepreneurship (the “birth” of 

Firms) seems easier to model but requires the implementation of ownership contracts; 

Agents who acquire the requisite “startup costs” could query the Economy to create a 

new Firm; the Economy would establish the founding Agent as the owner. 

 

Code Structure 
 

  To correctly and efficiently modify EOS, it is necessary to fully understand the structure 

of the underlying code-base. Conceptually, we have split the code for EOS into three distinct 

levels of abstraction: framework-level, model-level, and strategy-level code. The three levels 

create natural lines of dependency and polymorphism in the Java classes: strategy-level classes 

extend model-level ones, which in turn extend those in the framework. Maintaining and properly 



utilizing this three-level structure will be an important prerogative of future contributors, as it is 

an essential element of EOS’s clarity. 

 

The Framework Level 

 

 Code at the framework level is responsible for creating the API and language of the 

model. Thus, framework programs are interfaces and abstract classes. The EOS framework is 

meant to be highly general and to provide minimal restrictions to model- and strategy-level 

implementations.  

 

The Model Level 

  

 Model level code is responsible for enforcing “rules-following” behavior, such as forcing 

Laborers to eat each round or defining the production function for a Firm. Model-level code 

should be kept distinct from the framework because different approaches to modeling may 

implement very different behavior at the model-level while using the same framework. 

 

The Strategy Level  

  

 Strategy level classes are specific, refined implementations of higher-level abstractions. 

In the case of Agents, strategy-level code will often contain the algorithms for the decision-

making behavior, rather than the rule-following behavior of the model-level. For example, a 

SmartLaborer class might implement machine-learning algorithms to try to bid successfully in 

the Food and Labor markets, while a StupidLaborer class might bid randomly. Both, however, 

should extend the same Laborer model-level class which defines how much they must eat each 

turn, as well as how much labor they have to sell. A single simulation may contain many 

different strategy-level extensions of the same model for a particular type of Agent.  

 

 Here is a description of the levels used to implement SimpleLaborer, a basic “worker” 

Agent: 



 
 

 

Input and Output 

 

 EOS is designed to make setting input (customizing and running simulations) and getting 

output (simulation results) as easy and powerful as possible. In general, I/O is managed by the 

Economy class, which acts as a driver class for the simulation. Agents, Goods, and Markets are 

added to Economies on a class-by-class basis, which allows for a high level of customization. 

Output is in the form of CSV (comma-separated-value) text files, which can be opened in Excel 

and other programs for easy plotting.  

 

Economies 

 

 As the simulation driver, an Economy object is responsible for adding and keeping track 

of its constituent Agents and Markets. Economy methods can be complex to implement, since 

they involve numerous try-catch constructs as well as heavy use of the methods in the Java Class 

Agent 

The framework level is an abstract class 

which declares methods like act(), which 

are called by economy. 

Laborer 

The model level is an abstract class which 

implements “rules-following” behavior; a Laborer 

consumes food and is allotted labor each turn. 

Laborer implements act(), but declares new methods 

(such as bidOnFood) which will be used to 

implement strategic decision-making. 

SimpleLaborer 

The strategy-level class implements 

bidOnFood and bidOnLabor using simple 

decision-making methods. 

SimpleLaborer 

Agent 

Laborer Firm 

Farm 

SimpleFarm SmartLaborer 

The diagram at left shows the 

SimpleLaborer inheritance tree in detail, 

while the diagram above shows it as part 

of a broader context. Framework-level 

classes are in orange, model-level are in 

blue, and strategy-level are in green. 

While there is only one model-level 

class in the tree for SimpleLaborer, 

some trees, such as that of SimpleFarm, 

might contain two or more models with 

varying levels of generality. 



class. Luckily, Economy methods are general; adding new types of Agents, Goods, and Markets 

does not require changes to the Economy class. Economies support customizable output via the 

addPrinter() method, which allows the user to have the Economy print data of a specific type to a 

specified file. Adding new “types” of printers is very simple (at least in the BaselineEconomy 

implementation), although the difficulty may vary depending on the difficulty of gathering the 

data required. 

 

Creating a Simulation Program 

 

 For anyone marginally familiar with Java, the easiest way to run a customized simulation 

using EOS is to write a “simulation program”, which constructs an Economy, adds Agents, 

Markets, specifies output, and runs the simulation for the desired number of time steps. 

Simulation programs are short and simple. Here is an example: 

 
/**  

 * A sample simulation program for the baseline economic model. MySimulation  

 * can be run from Eclipse, or by typing "java MySimulation" in the terminal/ 

 * command prompt in the directory where MySimulation is stored. 

 */ 

 

package simulations; 

 

import economies.*; // import the economies package (for BaselineEconomy) 

import framework.*; // import the framework package (for Economy) 

 

public class MySimulation { 

 

    // create and execute the simulation 

    public static void main(String[] args) { 

        // the economy to be used 

        Economy E = new BaselineEconomy(); 

         

        // initialize E 

         

        // The names of Goods to be used 

        String[] goods = {"goods.Food", "goods.Labor", "goods.Money"}; 

         

        // these arrays contain starting quantity values for the Goods in goods 

        double[] qSL = {10, 0, 10}; // initial quantities for SimpleLaborers 

        double[] qSF = {0, 0, 5}; // initial quantities for SimpleFarms 

         

        // add 100 SimpleLaborers 

        E.addAgents("agents.SimpleLaborer", 100, goods, qSL); 

         

        // add 20 SimpleFarms 

        E.addAgents("agents.SimpleFarm", 20, goods, qSF); 

         

        // add a Food for Money Market 

        E.addMarket("markets.CallAuctionMarket", "goods.Money", "goods.Food"); 

         

        // add a Labor for Money Market 

        E.addMarket("markets.CallAuctionMarket", "goods.Money", "goods.Labor"); 

         

        // print the market prices at each timestep to prices.csv 

        E.addPrinter("MarketPrices", "prices.csv", 1); 

         

        // print the number of Agents alive every 5 timesteps to number.csv 

        E.addPrinter("NumberAlive", "number.csv", 5); 



         

        // run the simulation for 1000 timesteps  

        E.run(1000); 

         

        System.out.println("Simulation Complete!"); 

    } 

} 

 

Future Project—Text File Input 

 

To make things even easier for non-programmers, an important future project would be to 

develop a simulation program that uses a specified text file input format to create and run EOS 

simulations. This would create a veritable EOS language, and would increase maintainability and 

self-documentation as well as ease of use. 

 

Making Additions and Changes 

 Inevitably, future EOS users will desire to modify, extend, and refine it in a variety of 

ways. This section describes the general process through which such changes should be made. 

The most important step is to figure out which levels (framework, model, and/or strategy) your 

intended change modifies. It is important to remember that many changes will require fairly 

large modifications at the strategy level to properly take effect; if a new Good is introduced, but 

Agents do not know that it exists, they will not attempt to buy or sell it. Here are some examples 

of potential changes and the levels they affect, assuming you are running EOS with the baseline 

code (see Appendix A). 

Change F M S Explanation 

Create a barter economy with a 

food for labor market. 

   This can be set in the simulation program; it 

does not require changing the code base. 

Add a SmartLaborer class that 

uses machine learning. 

  X SmartLaborer will still extend Laborer, it will 

just implement the bid() methods more 

intelligently. 

Add a new type of Market with 

strict price controls. 

  X ControlledMarket will simply be a different 

implementation of Market. 

Changing the production 

function for a Farm. 

 X  This only requires modifying the 

convertToFood() method in Farm. 

Adding traders.  X X Must create a new Trader() model class that 

extends Firm, as well as a SimpleTrader() 

strategy-level implementation. 

Add gemstones, a commodity  X X Must create a strategy-level Gem class, which 

extends ContinuousGood, as well as a model-



which can be bought and sold. level class Mine, which extends Firm, and a 

strategy-level class SimpleMine as a basic 

implementation. Furthermore, Laborer Agents 

must be modified so that buying and selling 

Gems becomes part of their strategy.  

Add Contracts as described in 

Model: Future Projects, and use 

them to implement Firm 

ownership. 

X X X Must define a new framework-level API for 

Contract, and create a strategy-level 

implementation of an OwnershipContract. Firm 

must also be modified to use 

OwnershipContracts (model-level), while Firm 

and Laborer Agents must be modified at the 

strategy level to make use of them. 

Once you decide which pieces of code will need to be written/modified, writing the code itself 

using EOS classes and methods is fairly simple. Look at the sample code from the baseline 

implementation, as well as the comments describing it, to get an idea of how EOS code for 

various classes can be written. The example and guidelines below may also be helpful. 

An Example Modification—Adding Tractors 

 Let’s say, for example, that you want to expand the EOS economic model by adding 

tractors. A tractor, you decide, is something that farms can purchase to increase production. 

Tractors are assembled in factories and sold on the free market. You take the following steps to 

implement tractors in EOS. 

1. You decide that tractors come in discrete (integer) quantities. Thus, you create a new 

Tractor class in the goods package which extends DiscreteGood. 

2. Tractors are produced in factories, so you create a model-level TractorFactory class 

which extends Firm. TractorFactory defines a production function. For example, you 

might decide that, for L units of labor, the factory can produce 5*sqrt(L) tractors. 

TractorFactory also declares two abstract methods which will be implemented by 

strategy-level classes: buyLabor() and sellTractors(). 

3. You next create a basic strategy-level implementation of TractorFactory by adding a new 

class, SimpleTFactory, to the agents package. SimpleTFactory extends TractorFactory, 

and implements buyLabor() and sellTractors() using decision-making strategies inspired 

by those in SimpleFarm. It might seem like you are done at this point, but there are 

actually two more steps to go. At this point, tractors can be successfully built because 

SimpleTFactories will purchase labor in the Money for Labor Market and use it to 

produce Tractors. However, there are no customers for these wonderful machines and 

they will rust on the shelves without a few more modifications! 



4. Since Tractors increase Farm productivity, you change the convertToFood() method in 

Farm to take two inputs (tractors and labor) instead of one. You decide that each worker 

who uses a tractor is 50% more effective, so you change the production function from 

5*sqrt(L) to 5*(sqrt(L-t) + sqrt(1.5*t)), where t = Math.min(L, number of tractors). You 

also change Farm’s bidOnLabor() method to bidOnInputs(). Instead of modifying the 

existing Farm and SimpleFarm classes, you could of course also create a “parallel” farm 

class tree by writing, for example, a class TractorFarm which differs from the original 

farm class in the ways described above. In the long run, this approach may be preferable 

as it maintains old, but still functioning, versions of the code. 

5. Finally, you modify SimpleFarm (or write a new class SimpleTFarm) to purchase and use 

tractors by expanding the bidOnInputs() method to make purchases in the Money for 

Tractor Market. 

Guidelines and Recommendations for Design 

 When adding and modifying EOS code, we recommend that certain guidelines are 

followed to insure that the code remains maintainable and understandable.  

• Comment extensively. At a minimum, every method should be explained through a 

comment with the form /**…*/ immediately preceding the method signature (this will 

appear blue in Eclipse). Comments should explain how the method should work as well 

as which inputs will cause it to throw exceptions. 

• Do conscientious error-checking. When EOS methods receive improper inputs (for 

example, if a Market receives an offer with negative price), they should throw 

RuntimeExceptions rather than performing incorrectly. With so many interdependent 

pieces of code, this is the only way to maintain a development environment in which 

debugging is efficient. 

• Maintain a log of changes by adding edit comments to a program’s header comment (see 

CallAuctionMarket.java for examples). This supplements the SVN repository by making 

it easier to see how the code has changed over time.  

• Don’t change baseline code if you don’t have to, especially if doing so would render 

useless other dependent classes. When adding to EOS, try to add new classes rather than 

change old ones whenever possible. This makes it easier for future users to pick and 

choose which modifications they want to include. 

Goals—Code Structure 

 EOS’s code structure was developed to meet the following design goals which we feel 

are necessary to insure its future usefulness.  



• EOS is infinitely extensible. The general framework allows EOS’s code base to extend in 

any number of directions. 

• EOS is infinitely refinable. In creating the baseline implementations, we have made many 

assumptions about the nature of consumption, production, and decision-making. 

However, none of these assumptions are hard-wired into EOS. Thus, it is always possible 

to refine the correctness and complexity of EOS’s model. 

• EOS is easy to understand. We believe that the small size of the framework, as well as 

the adherence to the design motif of framework, model, strategy make the EOS system 

easy to understand. Our extensive commenting of each class and method should also help 

in this regard.  

• EOS is easy to use, regardless of one’s level of programming experience. The heavy 

commenting and thorough error-checking in EOS’s base classes make its code easy to 

use as a base for new development. Furthermore, the user-friendliness of Java and the 

simplicity of the simulation programs required to run custom EOS simulations should 

make it accessible for users with limited programming experience. 

Appendices 

Appendix A: The Baseline Code 

The so-called “baseline” model is consists of the initial code base created for EOS. The baseline 

implements a very basic economy; there are farms which buy labor and sell food, and laborers 

which sell labor and buy/consume food. While this model is extremely limited, it was an 

important step as it allowed us to test EOS’s features in a restricted environment. Here is a 

graphical representation of the baseline: 



 

 

 

   

FrameworkFrameworkFrameworkFramework    

SimpleLaborer 

Agent Market Good Economy 

Firm Laborer  

Farm 

DiscreteGood ContinuousGood 

BaselineEconomy 

SimpleFarm 

CallAuctionMarket 

Food Labor 

Money 

The Baseline CodeThe Baseline CodeThe Baseline CodeThe Baseline Code    

ModelsModelsModelsModels    

StrategyStrategyStrategyStrategy    


