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Abstract 

 Economics has always been an important field of study for the simple reason that, 

at its idealistic heart, it is the study of how to influence the trade and utilization of limited 

resources in order to make people as happy as possible. However, economics is also a 

field in which it is very difficult to prove assertions to be absolutely true because 

economics concerns itself with the behavior of people, and people all too often don’t 

know how they themselves will behave in certain situations, never mind predicting how 

other people will behave. This difficulty motivates a certain skepticism about how 

successful current economic thought actually is in terms of making people happier. Of 

course a contemporary example of one of economics’ failures is the current recession, the 

cause of which is a contentious issue agreed upon by few but has been blamed on 

everyone from the speculators on Wall Street to mortgage holders to government officials 

who perhaps failed to regulate the interactions of the preceding parties. The complex 

human element that predicated this recession is often overlooked by economic theory, 

which instead tends to focus on aggregate behavior that fits nicely into elegant equations. 

However, the elegance of these equations is lost in the chaos that ensues when they fail to 

accurately predict and prevent economic downturns. 

 In this paper we assert that economics lends itself more to analysis by simulation 

rather than analysis by equations, which tend to abstract away too many relevant details 

to be valid. More specifically, we assert that a simulation that models the interactions of 

individual agents in an economy is more useful than equations that aggregate individual 

behavior away into averages. Furthermore, we discuss the design and implementation of 

a new framework for such a simulation, EOS, which we argue is an improved version of 
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previous similar projects that informed its development. Finally, we discuss a few 

experiments with the current implementation that both demonstrate valid economic 

conclusions and bring to light a few of its limitations, which in turn motivate possible 

improvements for the future. 

 

Background to EOS 

 Before we proceed much farther, it would be wise to define the general structure 

of any agent-based economic simulation. In any of these simulations, time is discretized 

into timesteps during which the agents in the simulation interact with each other in ways 

defined by the simulation. Such actions may include eating, trading, processing or 

creating resources, reproducing, dying, etc. Each simulation is given certain parameters 

that may affect the amount of resources agents begin with, the behavior of agents in 

specific situations, etc. Once the simulation begins, it is autonomous in the sense that the 

researcher running it can’t intervene at an arbitrary timestep and save an economy from 

collapsing or agents from dying. The hope is then that interesting behavior, in terms of 

global prices of goods for instance, will present itself, and then the parameters of the 

simulation can be tweaked to determine what parameters affect the outcome in what way 

in order to build more realistic models. For a complicated enough simulation the 

discovered causal relationship between the parameters and the result may then inform 

economic policy decisions. 

 An example of such a simulaiton was MinSim, the predecessor to EOS on which 

EOS is based. MinSim’s initial implementation was predicated on what came to be 

known as the “gold-food” model, and was ported from C to Java by Chris Chan for his 
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senior independent work at Princeton in 2008 [1]. The idea was that there were two types 

of agents in the model that I’ll call laborers and traders. On each timestep both laborers 

and traders had to consume a unit of food and could trade food for gold or gold for food. 

Laborers had the additional ability to produce a certain fixed amount of either gold or 

food on each turn. The need for trade arose from the fact that traders and some laborers 

couldn’t produce enough food to feed themselves each turn, and so had to trade gold for 

food in order to survive. 

 In this initial implementation, Minsim appeared to be successful in showing that 

traders could stabilize absolute prices of food by essentially amplifying price signals due 

to their “buy low, sell high” behavior [2]. However, this is a dubious achievement 

because one would expect the price of food to rise for the following reason: every 

timestep laborers were producing gold, the currency in which the price of food was 

measured, which means that inflation was occurring, but the price of food was staying 

relatively constant! 

 MinSim also appeared to be flawed in other ways, and these flaws eventually 

convinced us to start over with EOS. Chris Chan expanded upon the gold-food model by 

adding farms, banks, and tractor factories in the second semester of his project [3]. What 

he failed to note in his paper is that stable runs of the expanded economy only occurred in 

about 16% of the simulations for this expanded model (this was noted by both Daniel 

Hayes-Peterson [4] and Eric Vreeland [5] in their papers on the topic) for an unknown 

reason. Vreeland’s paper is almost entirely dedicated to tracking down why so many runs 

failed, and though he doesn’t narrow down the reason exactly, he does make some 

damning observations about the MinSim framework. 
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 Vreeland’s eventual conclusion was that so many runs were failing because 

money was inadvertently being injected into the simulation through shoddy bookkeeping 

within the framework [6]. Equally disheartening is that he noticed that while laborers 

were in theory required to consume food each timestep, if they had no food then this 

requirement was not enforced [7]. In other words, agents didn’t die. Furthermore, there 

was no way to add the ability to die to the MinSim framework without rewriting large 

parts of the framework [8].  

At this point it was clear that MinSim was broken rather severely. Not only was 

there a bug in a basic mechanism in the program, but also the framework wasn’t flexible 

enough to be extended in a very elementary way. We also took into account MinSim’s 

utilization of the RepastJ framework. RepastJ is a library for implementing just this sort 

of simulation, but we found that using it demanded too much overhead for such a small 

model and that we would likely gain more flexibility (for instance, in terms of how output 

was displayed) if we were to begin again from scratch. Having learned from the mistakes 

of MinSim, we set out to create a framework for a simulation that was flexible enough to 

be extensible in every direction by anyone who took up the project after us. 

 

Design Decisions and Implementation 

 Whereas most economic simulations are designed to model a particular economy 

that exists in the world (Electricity Market Complex Adaptive System (EMCAS) [9], a 

model of the electricity economy in Illinois is one example of many), our goal in EOS 

was to develop an extensible model that could be used to study economics in the most 

general sense. We looked to Leigh Tesfatsion’s work (her website [10] was a great 
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general resource to get started) for guidance, as she appears to be the current authority on 

agent-based computational economics (ACE), which is just another name for the type of 

simulation we concern ourselves with in this paper. In particular we reaffirmed that Java 

was a very suitable language in which to develop because its object-oriented nature and 

support for class inheritance provided a natural structure on which we could impose a 

taxonomy of agents (following the advice of Tesfatsion [11]). In fact we called the result 

of our labor EOS, an acronym for Economic, Object-oriented Simulation, to emphasize 

just that feature. Organizing the simulation into a suitable hierarchical taxonomy would 

allow it to be easily extensible in the sense that the amount and locality of coding 

necessary scales with the complexity of whatever new mechanism is being added to the 

simulation. That is, conceptually small changes should only require minimal recoding in 

only a few different files. Also, to aid both ourselves and our successors to the project, 

we aspired to impose strict error checking so as to catch invalid parameters to methods as 

early as possible in order to speed up the process of debugging, which can be time-

consuming with unfamiliar projects. Finally, in the context of this high-quality model, we 

hoped to recreate some of the results of MinSim, or at least give some demonstration that 

our simulation actually produced meaningful results.  

 The three high-level classes on which we chose to organize our new framework 

were Agent, Good, and Market (note that there is a very good description of the EOS 

structure in the Ajent (a previous name for our creation) Documentation [12] that 

Michael Adelson put together, which the next few paragraphs reproduce in part). 

Conceptually, these were the three entities that seem necessary to have a minimal 

working economy. Different agents could own goods of various types and trade them 
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according to the rules defined by implementations of markets. Agents could be anything 

from laborers to firms to banks; the only things that agents must be able to do is possess 

goods and be added and removed from the simulation (i.e. because of death in the case of 

a laborer and because of bankruptcy in the case of a firm). Every other class in our 

simulation inherits from one of these three, except for the Economy class, which 

essentially is the driver of the simulation itself. 

 The Economy class is responsible for running the simulation by calling the public 

act() method of every agent in the simulation (so that each agent could interact with the 

simulation) and calling the public clear() method of every market in the simulation (so 

that bids could be resolved) on every timestep. We tried to keep the economy class as 

uncluttered as possible. For instance, in our baseline implementation of an economy, we 

have laborer agents who must eat every timestep, and the natural question that arose was 

where this eating would be enforced. Michael and I toyed around with the idea of 

enforcing this in the Economy whereby a hypothetical eat() method could be called every 

timestep as well. However, if many similar mechanisms had to be enforced for future 

agents, it would make more intuitive sense to associate those mechanisms with the agents 

themselves rather than having them all bunch up at the Economy class. Therefore, 

Michael and I eventually decided it would be better to enforce eating in a subclass of 

Agent that was also an abstract superclass of the actual laborer implementation. In the 

end we had Agents that act()ed, Laborers that extended Agent and eat()ed in the act() 

method as well as calling bid(), which was implemented by, for instance, a 

SimpleLaborer that extended Laborer and implemented bid() according to some simple 

rules. This effectively separates the enforcement of eating and other behavior; if an Agent 
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is a Laborer, then one can be sure that it would eat every timestep, but behavior outside 

of that depends on each specific implementation. 

 The other major design decision that influenced the simulation a fair amount was 

deciding how objects would communicate in order to pass on information that was 

necessary for the simulation to work properly. We decided to err on the side of caution 

and include a way for every object in the simulation to communicate with every other 

object, or at least, if two objects couldn’t communicate (for instance, to prohibit collusion 

between laborers when selling their labor), that functionality could be easily added if 

desired. The Economy object has a reference to every object that needs to potentially 

perform an action on every timestep: agents, markets, etc. Because of this, any objects in 

the simulation just needs a reference to the economy itself in order to communicate with 

other objects in the simulation. For instance, the way that agents access markets to submit 

bids is to call a method (getMarketFor()) from their instance of the economy that returns 

the relevant market. 

 Finally, we wanted to create a way to selectively and generally output information 

about each run of the simulation, and the natural place to do this was of course the 

Economy class since it has a reference to every other object in the simulation. Michael 

was responsible for implementing the code that essentially allowed the person running 

the simulation to select between a few different “printers” which outputted information 

with some frequency to a CSV spreadsheet that thereby chronicled the events of the 

simulation. For instance, there are currently printers that allow the price of food and labor 

to be printed, and since the economy has access to every object in the simulation, there is 

essentially limitless potential for further printers to be added. 
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 We now examine the motivation behind the design of the three high level classes 

and the classes that extend them, beginning with markets. Again, we strove for 

simplicity. Markets have only two goods which are both traded for each other within the 

market; one good is designated the currency, and the other the product. To submit bids to 

buy or sell goods, agents pass references to their goods into the relevant market (i.e. in 

order to sell food for money, agents pass food and money into the market where food is 

the product and money is the good) along with their offer of how much to buy or sell and 

at what price. The methods to buy and sell are two distinct methods, and agents always 

buy the product with the currency and sell the product in return for the currency. When 

markets clear(), they use the references to the goods passed to them in order to increase 

and decrease the quantities of corresponding goods owned by two agents who have 

agreed to trade via the bids. 

In the decision to designate one good as the currency, it may appear as though we 

sacrificed some generality. For instance, it doesn’t seem as though our model could 

support an economy based entirely or barter, where the goods being traded are both 

products with inherent value (i.e. neither is just money). However, this situation can be 

handled in our model by simply creating a market that has one of the goods to barter as 

its product and the other as its currency. This is a bit unintuitive since it introduces a 

needless asymmetry between the goods, whereby if an agent wanted to trade wool for 

food, it would have to know which was the designated currency in the market in order to 

decide whether to call the buy() or sell() method of the market. For this reason, our 

implementation of markets has methods to identify which goods are designated as 

products and currency. 
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 A viable alternative implementation of markets is to have no distinction between 

the two goods associated with it and a single method called something like submitOffer(). 

Agents would pass references to their goods in a particular order that designated that they 

wanted to trade a quantity of the first good in return for the receipt of a second good. 

While elegant, this implementation is a bit unintuitive since most people think of buying 

and selling as two distinct actions. In this implementation we felt it would be difficult to 

constantly switch between mindsets where for instance in order to sell food, one is really 

buying money with food, and in order to buy food, one is really selling money for food. 

People don’t usually conceptualize trade as the buying and selling of money. In order to 

mitigate this potential confusion and any errors it would generate, we opted against this 

implementation, realizing too that most economic simulations would probably have a set 

currency, so clarity in the majority of implementations outweighed the cost of a loss of 

elegance. 

 Goods were much more straightforward to implement than the markets that 

organized their trade. In our current implementation, Good objects have a single field for 

the good’s quantity and methods for accessing that quantity, increasing it, and decreasing 

it. The quantity may be either continuous or discrete, and this is indicated both by the 

subclasses DiscreteGood and ContinuousGood, and by a method in Good, isDiscrete(). 

An alternative implementation that we quickly decided against was to have each instance 

of a Good represent a discrete unit of a good, but of course this left no way to deal with 

continuous goods, and furthermore it would have led to a deluge of instances of Goods, 

which would not have scaled very well at all. Structuring the representation of goods into 
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single objects also allowed quantities of goods to be grouped nicely where an instance of 

a Good represented the quantity of a good owned by a single agent. 

 Agents themselves on a high level were also not very complicated. Besides a 

reference to the economy that they’re in, the only other important field is really a map of 

goods that maps a String to an instance of a good possessed by that agent (i.e. “Food” 

maps to an instance of a Food object). As already mentioned, Agents have an act() 

method, and they also have an isAlive() method which lets the economy know if an 

Agent has died. Agents also have a die() method, but this method is protected. die() could 

have been made public, with the onus of killing Agents then resting on the economy, but 

just like the discussion of eat() earlier, it would have led to too much clutter in the 

Economy class, so we gave the responsibility of killing Agents to the subclasses of 

Agents, which we’ll discuss next. 

 We implemented Laborer as a subclasss of Agent and built the specific attributes 

of Laborers into the act() method. Within the Laborer act() method, the laborer is forced 

to eat and is granted a timestep’s worth of labor to sell on the labor market. Within the 

eating subroutine, the laborer also calls die() if it doesn’t have enough food to eat on that 

timestep. At the end of act() the Laborer calls an unimplemented method called bid(), 

which needs to be implemented by classes that extend Laborer in order to interact with 

the simulation. This structure separates all the required behavior of laborers into the 

Laborer class, and leaves implementations of interesting behavior to subclasses. This 

seems to be ideal for a variety of circumstances; one we had in mind was using this 

model as a classroom assignment to create Laborers to compete in an economy populated 

by each student’s Laborer implementation. In order to interface with the simulation 
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properly, all implementations would have to extend Laborer, so they would be guaranteed 

to eat every turn or die and receive a set amount of labor every turn. Now, since agents 

have access to their list of goods, it is possible for them to increase them directly by 

calling deposit() for the relevant good. However, since this is the only way to increase the 

quantity of a good, it would be very easy to check in this hypothetical assignment 

whether or not laborers were cheating by examining the source code for any instances of 

calls to deposit(). 

 Firms and the Farms that extend them were implemented in a very similar way to 

Laborers. The only behavior that Firms are required to implement is that at the end of 

every timestep, any labor that they bought must be discarded. The way that firms would 

use labor productively is by calling an unimplemented produce() method that converts 

labor into another good according to some function. Firms don’t need to eat as Laborers 

do, but they can die if they have no money on hand and no products to sell either. As in 

the Laborer class, this check on dying is made in the act() method of Firms, but the 

implementation of the check is left to subclasses like the Farm. 

 Farms extend Firms and specify Food as the good that they sell. Farms implement 

a conversion from Labor to Food as well as a declaration of bankruptcy if the farm has no 

money or food (to sell) or labor (to convert to food). Also just like laborers, Farms have 

an unimplemented bid() method which subclasses are required to implement. By 

organizing things in this way, subclasses of Farms convert labor to food in a way 

enforced by the farm, separating the required and optional behavior of the subclasses. By 

separating Firms and Farms, we leave open the possibility of adding Firms that produce 

other goods from labor while simultaneously enforcing the purge of unused labor as high 
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up in the inheritance hierarchy as possible. As with this decision, the driving factor in all 

of the decisions of the EOS framework have been to be as simple and as extensible as 

possible. 

 The Ajent Documentation [13] has a fair amount of examples of how the model 

might be extended, namely by creating agents that reproduce, adding tractors as capital 

for farms, and adding the support for contracts between agents (see the documentation for 

a more thorough discussion about how these might be added). Another addition to the 

model that we discussed could be the addition of firms that are owned by laborers or 

groups of laborers. As it is now, firms and the farms that extend them have no owners, 

and this became a bit of an obstacle when we tried to get a baseline version of an 

economy running (this will be discussed later). It wouldn’t be terribly difficult to create a 

new type of Firm called OwnedFarm that had a reference to an Agent that owned it; the 

owning Agent would extend a new class OwnerAgent and would also have a reference to 

the OwnedFarm. In the OwnerAgent’s act(), the agent could call methods in the 

OwnedFarm that dictated bidding on food and labor. OwnedFarms would still enforce the 

dissolution of all their labor through their own act() method, which would not do any 

bidding on food or gold, and their act() could not be overwritten by subclasses. Since 

managing a farm would take time, we might stipulate that OwnerAgents that own a farm 

can’t use their labor to work on other farm for instance. If an OwnerAgent deemed that a 

farm they own is no longer making sufficient money, they could abandon it in favor of 

working on another farm or founding a different type of firm. As a final note, the way 

that agents would start a farm is buy calling a method that already exists, addAgents(), in 

their reference to the economy. There are many possibilities for extensions like this one, 
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but once we had the basic parts of an economy implemented, we wanted to create a 

baseline working model as a proof of concept. 

  

A Baseline Implementation 

 In theory, we believed our organization of the model was sound, but a theory is no 

good until its been verified empirically, and of course if our simulation didn’t produce 

economic results that made any sense, it wasn’t a very useful model. Therefore, we took a 

step back and laid out a few requirements that, if met, would mean that our simulation 

worked in a useful way. We started out by assuming one farm and around a dozen 

laborers. The first requirement is that most of the laborers need to survive for a 

reasonable amount of time, assuming that the single farm could support them all in 

theory. After all, nothing interesting would ever happen in our simulation after all the 

laborers die. The second is that the prices of one day’s worth of food and one day’s worth 

of labor for laborers should oscillate around some fixed value; the values needn’t be the 

same, and it was alright if the oscillations were fairly wild (this was illustrated by the 

initial implementation of MinSim [14]). Finally, the price of one day’s worth of labor 

should be greater than or equal to the price of one day’s worth of food. This is more of a 

corollary to the previous requirements; that is, if the laborers don’t die, and their only 

way to get money is to work, then they must be getting paid enough for one day’s labor 

to eat one day’s worth of food. 

 The first thing we needed to do was decide upon a market to use in the simulation, 

and for this we looked to MinSim for guidance. Like MinSim, we used a call auction 

market [15] called, fittingly enough, CallAuctionMarket that Michael coded up. The 
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basic idea is that sell bids and buy bids each form their own curve in the price-quantity 

plane, and the market price and quantity traded on that timestep are set at the intersection 

of the two curves. Then, bids are cleared at that price such that the highest buy offers and 

lowest sell offers are cleared first. An important note about this market is that on each 

turn, each agent can submit as many bids to the market as they like since each bid is 

cleared independently of every other bid. This allows agents to effectively submit a 

supply or demand curve for the product they are selling or buying, something that was 

not supported in MinSim but turned out to be very useful when we went about 

implementing our baseline simulation. 

 After the three of us played around with ideas, I implemented a very rudimentary 

SimpleFarm and SimpleLaborer that exhibited a few of the requirements. In the 

simulations that followed, most of the time 3 SimpleLaborers survived indefinitely with a 

single SimpleFarm, and this effect scaled, so 4 SimpleFarms could support 12 

SimpleLaborers. A representative simulation is below: 
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Note that the above graph only displays 150 timesteps to show the initial random 

behavior before things settle down; after the period displayed by the graph, prices remain 

relatively fixed. As the graph makes clear, prices remain pretty stable and labor usually 

costs more than food, but oscillations in these prices are not present. This behavior, while 

not ideal, did at least demonstrate that the code for the interactions between agents was 

functioning, and the lack of oscillations makes a lot of sense once one examines how 

SimpleFarm and SimpleLaborer make their bidding decisions. 

 SimpleFarm bids on buying labor by bidding the expected revenue for the next 

unit of labor until the expected revenue falls below a certain amount or the farm runs out 

of money (when a bid is submitted, the market deducts the appropriate amount of money 

from the agent that submitted the bid). That is, for the next unit of labor, the farm 

examines how much food that labor would produce according to its production function, 

multiplies that by the last price of food, and bids that amount for the labor. SimpleFarm 

sells food at the last price of food or a random number in some range if it’s the first 

timestep. 

 SimpleLaborer buys food according to a linear function determined by its food 

threshold. The idea is that SimpleLaborers would like to have a comfortable stockpile of 

food for the near future and are willing to pay more for a day’s worth of food if they are 

closer to having no food left to eat (this is another idea we borrowed from MinSim). 

Therefore, SimpleLaborers don’t bid on food if their food on hand is greater than or equal 

to their food threshold, and they bid linearly increasing amounts of money the less food 

they have, up until they bid all of their money on hand in the event that they have a 

timestep’s worth of food left. SimpleLaborers sell their labor at the last price of labor. 
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 Now, of course with two of the four strategies for bidding coming directly from 

previous prices, it should come as no surprise that once prices reach a value that can 

support the remaining agents, prices fluctuate very little thereafter. However, this is also 

very artificial since neither farms nor laborers attempt to deviate from the previous 

market prices in a way that gives them an advantage. For instance, one thing that we 

noticed with the previous simulation was that farms were accumulating a lot of food, 

more than enough to have fed laborers that had died. With this in mind, we set out to 

create a more realistic simulation that exhibited all the properties we previously 

mentioned. 

 All three of us spent a fair amount of time trying to tweak the implementations of 

farms and laborers to achieve a working model, but it was eventually Michael who got a 

working pair with BudgetLaborer and DemandCurveFarm. One thing we noticed as we 

experimented was that our agents tended to amplify price swings by basing their bidding 

decisions only on the prices of the last timestep; often the economy couldn’t recover from 

these drastic swings and the laborers died. Therefore, just as in MinSim model did in its 

traders, we tried using exponential smoothing to allow the agents to take advantage of the 

history of the simulation they were in; both BudgetLaborer and DemandCurveFarm 

ended up using this method of incorporating history into their bidding strategies. 

 DemandCurveFarm ended up being not so different from SimpleFarm, but the 

differences solved the problem of farms accumulating large amounts of food that they 

would never sell. The heart of the problem is that farms with no owners have no incentive 

to hire laborers and produce food. Whereas laborers must eat and will die if they don’t 

work to get money to buy food, farms could sit on their money and exist forever while 
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the laborers around them died en masse. Therefore, while the strategy for buying labor 

was unchanged from SimpleLaborer (except that it now implemented exponential 

smoothing) and was therefore just as competitive, the new strategy for selling food was 

very benevolent. DemandCurveFarms sell all their food at a price equal to (exponentially 

smoothed price of food) * (constant) / (current food on hand), which translates to an 

inverse variation between food on hand and bidding price, meaning that these farms sell 

food at very low prices as soon as their food on hand approaches the constant above. 

With these changes, DemandCurveFarms generously sell at very low prices any food that 

they would otherwise hoard until the end of the simulation. 

 BudgetLaborers differ markedly from SimpleLaborers, and these differences 

allow them to stay alive indefinitely in simulations with enough farms to produce food. 

When selling their labor, BudgetLaborers expand upon the knowledge that they should 

get paid enough to eat for at least one additional timestep. Therefore, if their food on 

hand is greater than their food threshold, they sell their labor at a price equal to 

(exponentially smoothed price of food) * (food on hand) / (food threshold) since they  

don’t need the money that badly and would rather take a chance on a higher bid. If the 

amount of food on hand is less than half their food threshold, they bid 75% of the 

exponentially smoothed market price of labor, choosing to undercut the current market 

price in an effort to be hired independent of the current cost of food. Finally, in the case 

where their food on hand is more than half the food threshold, but less than the food 

threshold, they bid slightly more than the current price of food, hoping to make enough 

money to eat another day and a little extra just to be safe. 
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 The way that BudgetLaborers bid on buying food is based on the same sort of 

tiered bidding scheme that depends on the current amount of food the BudgetLaborer has. 

The key insight that Michael had about laborers is that in our previous attempts, laborers 

would often bid far too much money for food when they began to get desperate, and they 

would then have no way to rebound and achieve a reasonable stockpile of food since they 

had no money left. Therefore, the bidding scheme had to provide a way for laborers to 

rebound from this desperation and attain a comfortable level of food once again whilst 

preventing them from spending all their money on just a few days worth of food. To 

achieve this, BudgetLaborers set a budget at the beginning of every timestep that 

increases as their food reserve decreases, but the budget never goes above four times the 

price of food or below half the price of labor. If their food on hand is below half their 

food threshold, then they submit two high bids for food (within the budget) in an attempt 

to get enough food for the next two timesteps. Otherwise, they submit linearly decreasing 

bids for less money until they’ve exhausted their budget. 

 Below is a representative simulation with 30 BudgetLaborers and 5 

DemandCurveFarms; all the laborers survived after 10,000 timesteps: 

 



Rucinski 19 

As can be seen clearly there are fairly wild oscillations, but the prices of both food and 

labor seem to remain stable, and most importantly, all the laborers survived through the 

whole simulation. Having achieved our intermediate goal of surviving laborers in a 

relatively stable economy, it was time to test the limits of how stable the simulation was 

when parameters given to it were altered. 

 

Experimentation 

 There are many parameters implicit in the previous discussion, and before we 

start tweaking them, it will be useful to state fully the initial set of parameters from which 

we are deviating. In the previous instance of the most recent baseline, there were 30 

BudgetLaborers and 5 DemandCurveFarms that each started off with 15 units of money 

and 15 units of food. The BudgetLaborers felt comfortable if they had 15 food on hand or 

more, so they each started with a comfortable amount of food but were motivated to buy 

food almost as soon as the simulation started. The exponential smoothing for both the 

laborers and farms was such that (new predicted price) = (alpha) * (current market price) 

+ (1 - alpha) * (old predicted value), where alpha was 0.1. The production function for 

the farm was (food) = min(2.5 * labor, 40). All other strategies for bidding for both the 

laborers and farms is the same as discussed before and for the proceeding experiments, 

only BudgetLaborers and DemandCurveFarms are used unless otherwise noted. 

 Probably the most obvious question to ask about a simulation such as this is how 

changing the initial distribution of money affects the outcome of the simulation. Ideally, 

it should be the case that a wide array of initial distributions of money should produce 

similar results, since a simulation that collapses on all but only a few specific sets of 
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parameters is not terribly useful. To test how our simulation would fare, I altered the 

starting values of money gradually such that the sum of the money that each laborer and 

each farm began with always summed to 30. So, if we represent starting values for 

money as (money for each farm, money for each laborer), I tested all the cases in the 

series (0, 30), (1, 29), … , (30, 0) over a series of 10,000 timesteps each. The results are 

below for the number of agents alive at the end of each simulation: 

 

As the graph shows, the initial starting values for money have little effect on the final 

outcome of the simulation. This may be a little surprising, but it’s important to remember 

that even when laborers began with no money, they still had 15 food and could work on 

farms to earn money quickly. A few laborers did die every now and then, but two or three 

agents dying over the course of 10,000 timesteps doesn’t seem symptomatic of any deep 

problem and is more likely the consequence of the random guessing at prices that occurs 
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at the beginning of the simulation before any market prices are available. Therefore, this 

experiment yielded positive results overall in terms of our simulation behaving as it 

would be expected to. 

 Another interesting parameter to tweak is the alpha used in the exponential 

smoothing for the agents in the simulation. Conceptually alpha is the weight that the 

agent places on the most recent market price when trying to estimate the market price for 

the next timestep. In this sense agents with a low value of alpha attribute less weight to 

the current market price and therefore “remember” more of the past market values. As 

alluded to earlier, we expect agents who remember more to have a stabilizing effect on 

prices, even to the point of saving the economy from collapsing and all the laborers 

dying. To test this, I ranged alpha for all the laborers in the simulation from 0.1 to 1.0 in 

increments of 0.1 for 100,000 timesteps and noted the stabilizing effects of each value. 

The results are below:  
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Clearly, laborers with a longer memory tend to stabilize prices better since in simulations 

with laborers with lower values of alpha, the prices of both goods tend to vary less. In 

fact, when alpha was 1, all the laborers in the simulation ended up dying at around the 

70,000th timestep (the standard deviation for that data point was taken over the time when 

at least one laborer was alive). This experiment quantitatively showed that granting 

agents a memory of previous prices tends to stabilize prices, thereby keeping agents alive 

that otherwise would have died. 

 Having examined two experiments that present positive, expected results from our 

model, we now examine two experiments that reveal a few unintentional consequences of 

how our baseline model was implemented, beginning with a look at inflation. In our 

baseline model, there was always a fixed amount of money that was the sum of all money 

granted to each agent at the beginning of the simulation. I wanted to see what would 

happen if we granted the farms additional money (this could be thought of as an 

unsolicited farm bailout funded by a government printing money) on each timestep; 

would the laborers die because of their disadvantaged economic simulation? At the very 

least, we would expect prices to rise. This last observation may seem obvious, but recall 

that this is something that did not happen in MinSim, and definitely should have. I altered 

the simulation so that every turn, the money that each farm possessed doubled. The 

results of 10,000 timesteps are below: 
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As expected, the prices follow an exponential increase, following the roughly exponential 

increase of money in the simulation every timestep. What is not shown in the graph and 

what was not expected at all is that every laborer survived. 

 My first inclination was that the laborers survived because although money was 

being injected into the economy at an obscene rate, the exponential smoothing that both 

the farms and laborers were using would dampen the effects to the point that it would be 

negligible. However, as the graph above makes clear, the effects of the inflation are not 

dampened, but merely delayed, so the reason for the indestructible agents must lie 

somewhere else. Therefore, I examined more closely the behavior of our agents in the 

model to try and explain these results. 

 The one major change we made to stabilize our baseline simulation was to make 

both farms and laborers benevolent to laborers. Farms had sales on food, and laborers 
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would sell their labor for more if they didn’t need money, allowing more desperate 

laborers to be hired first. I wanted to test just how much of an impact this had on the 

stability of our baseline simulation, and to test it I created a variation on BudgetLaborer 

named EvilBudgetLaborer, which was the same as the old BudgetLaborer except for one 

line of code. When an EvilBudgetLaborer had more than a comfortable amount of food, it 

decreased the price at which it sold its labor, undercutting potentially desperate other 

laborers. My prediction was that if I put these two types of laborers into a simulation 

together, then eventually all the BudgetLaborers would die at the hands of the predatory 

EvilBudgetLaborers. I ran a simulation with 15 of each type of laborer and 5 farms; the 

results are below: 

 

As predicted, the BudgetLaborers eventually all die. What is surprising though is that so 

many laborers all die over the course of just a few timesteps both when all the 
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BudgetLaborers die and when the EvilBudgetLaborers die a few thousand timesteps later. 

We noted similar behavior in our previous unsuccessful models. What happens is that 

since all the laborers behave in a similar manner, they each slowly become poorer at 

about the same rate, and by the time a few of them die, the others are so poor that they 

cannot recover and die as well. In this particular simulation, it appears that the 

EvilBudgetLaborers’ predatory pricing undercut all laborers in the simulation, first 

eliminating the benevolent BudgetLaborers and a few unfortunate EvilBudgetlaborers 

and finally driving the remaining EvilBudgetLaborers to die as well. 

 The preceding experiments validate certain aspects of our baseline 

implementation and raise a few questions as well. Our baseline simulation is robust 

against a fairly wide range of initial conditions. Exponential smoothing works as intended 

and is a fair way to grant agents the ability to remember. However, the inherent 

benevolence of our agents perhaps plays too big a role in the stability of our simulation 

(for instance, in helping to weather absurd rates of inflation). On the other hand, should 

we really expect a simulation populated by uncooperative agents to flourish? In the real 

world, people definitely look out for themselves, but they also look for opportunities to 

mutually benefit from cooperation. It is a complicated question, but it is worth noting that 

if a simulation produces only expected results, then there is really no need for the 

simulation in the first place. In the end, the only way to say for certain whether 

unexpected results are incorrect is to examine the assumptions that the model makes in 

terms of behavior of the agents and see if they agree with the behavior of people in the 

microcosm modeled in the simulation. Since we weren’t modeling any particular 

situation in the real world with our baseline model, it is unclear how correct our baseline 
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model was, but it proved what it set out to prove, that our modeling framework can 

support an economy with fairly complicated behavior among multiple agents. 

 

Conclusions 

 The main purpose of this project was to improve upon the MinSim modeling 

framework in terms of simplicity, extensibility, and correctness. Where MinSim fell short 

in terms of providing easy avenues for extensions, EOS seems to excel. Whereas MinSim 

began with the gold-food model and was shoehorned around the idea of expanding in 

other directions, EOS was designed from the beginning with that explicit end in mind. 

It’s hierarchical taxonomy of agents is designed to make changes as easy as possible, and 

the ease with which I was able to run the experiments at the end is a testament to this. 

The results of these experiments show that the EOS framework is capable of supporting 

an interesting economy that generates questions about the interactions between agents 

within that economy, and the possibility of extending the model to incorporate more 

complex institutions and economic agreements is readily supported.  Finally, it is worth 

noting that while EOS purports to eventually be a very general framework on which most 

economies can be modeled, no model is a perfect model of life. In the words of George E. 

P. Box, “All models are wrong, but some models are useful.” It is our hope that EOS will 

continue to be a member of the latter group as it is expanded and revised in the future. 

 

This paper represents my own work in accordance with university regulations. 
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Appendix: An Breakdown of Individual Work Done 

 For the explicit purpose of grading this paper as a submission for independent 

work, it will be useful to break down which parts of the project were done by which 

people, at least to the extent to which the work is divisible. I will note that this account is 

of course from my perspective, and it is entirely possible that I’ve omitted some of the 

work of the other members of the group that didn’t make it into the final version of the 

code. 

 All three of us met with Professor Steiglitz to come up with a basic framework for 

EOS. Cody then created a partial mock up in Java of classes we decided on with the 

intent of creating a working baseline very quickly. This proved to be rather hasty, overly 

optimistic evaluation of the difficulty of the task. When it was clear that we would have 

to spend more time fleshing out the model before implementing it, Michael and I 

conceptually refined the previous model; in particular we made the decisions about where 

to enforce eat()ing and the like in agents (at this point Cody had not yet returned from 

spring break). Then, Michael wrote up the Simulation, Economy, and Market framework 

classes while I wrote up the Agent, Firm, Farm, and Laborer framework classes. After 

that, Michael wrote up the implementations for the CallAuctionMarket, the 

baselineSimulation and the baselineEconomy while Cody and I tried to put together 

agents that would function correctly in the simulation. 

 After I got SimpleLaborer and SimpleFarm working, the three of us tried to come 

up with more sophisticated implementations that provided similar results. A lot of time 

was spent in meetings discussing the best approaches, and I can’t really speak for what 

specific code people wrote besides myself and the final BudgetLaborer and 
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DemandFarmCurve that Michael implemented. In my search for stability, I wrote 

SimplePredictiveFarm, PredictiveSalesFarm, SimpleSaleLaborer, TheoryLaborer, and the 

following two classes: TieredRucinskiLaborer and TieredRucinskiExponentialLaborer, 

which were based on an implementation that Michael had at one point that I’ve renamed 

TieredAdelsonLaborer to avoid confusion. Aside from that I know that Cody wrote up 

TheoryFarm. All these classes can be found on the CD that accompanies this paper. After 

we settled on BudgetLaborer and DemandCurveFarm, I know that Cody and Michael 

experimented a little bit with traders, though I’m not sure how complicated those got. 

Also, throughout this process, Cody had been maintaining an SVN repository to organize 

all these different files as well.  

 There were many more informal trials that never made it into formal classes 

because the changes from previous implementations were so minute or the changes didn’t 

help the behavior of the simulation in any tangible way. Also, most if not all of the files 

on the CD associated with this paper should have comments in the initial comment 

section denoting who worked on which files. Finally I will note that a very sizeable 

portion of the work spent on this project was done on blackboards in meetings, and it’s 

very difficult to break that sort of work down since there were no persistent, tangible, 

direct results from those discussions. 


